
Reducing the Gate Count of Bitslice DES

Matthew Kwan

mkwan�darkside�com�au

Abstract� This paper describes various techniques to reduce the num�
ber of logic gates needed to implement the DES S�boxes in bitslice soft�
ware� Using standard logic gates� an average of �� gates per S�box was
achieved� while an average of �� was produced when non�standard gates
were utilized� This is an improvement over the previous best result� which
used an average of �� non�standard gates�

� Introduction

In his ���� paper ���� Dr Eli Biham described an implementation of the Data En�
cryption Standard 	DES
 ��� that produced signi�cant performance advantages
on ��bit RISC architectures� It essentially involved converting the DES algo�
rithm into an equivalent logic circuit� using AND� OR� XOR� and NOT gates�
When this circuit is run as software using the equivalent AND� OR� XOR� and
NOT instructions on a ��bit machine� it has the e�ect of executing DES �
times in parallel� Such an implementation is known as bitslice DES�

Bitslice implementations of DES have a speed advantage because they do
not require additional instructions for the various permutation operations that
slow down traditional DES software� Instead� their bottleneck is the number of
gates required to implement the logic circuit� Since there is no way to reduce
the number of gates used to XOR the subkeys with the expanded input to each
round 	� gates per round
� or to XOR the output of each round with the data
	�� gates per round
� the S�boxes provide the only room for improvement�

DES has eight S�boxes� each of which can be thought of as a circuit with
six bits of input� and four bits of output� Given an average of N logic gates to
implement each S�box� the total number of gates in a DES implementation is
thus �� x 	� � �� � �N
 or ���� � ���N �

The algorithms described in this paper produce circuits with an average
of �� gates per S�box using standard instructions� and �� using non�standard
instructions� This compares with the previously best known average of �� 	using
non�standard gates
 ���� and the previously best published average of �� 	using
standard gates
 �� ��� ����

� The Original Algorithm

In Biham�s paper ���� he describes an algorithm that produces an average of
approximately ��� gates per S�box� What follows is a brief recap�

Basically� for each S�box� the technique is to take two of the input bits�
expand them to all �� possible functions of two variables� and use the remaining
four S�box inputs to select from those �� functions� However� the details are
slightly more complicated�

Think of an S�box output bit as being a function of six boolean variables�
This can be implemented by using one of the variables to select between two
functions of the remaining �ve variables� To generate a function of �ve variables�
use one of those variables to select between two functions of four variables� And
so on� down to functions of two variables� There are only �� functions of two
variables� and they can all be generated with total of �� gates 	assuming they
are all needed
�

To select between two functions Fa and Fb� if you use standard multiplexing�
requires three gates 	not counting the inversion of the selection bit� which only
has to be done once per S�box

	Fa AND sel
 OR 	Fb AND NOT sel
 	�

However� using the XOR operator� you can carry out a modi�ed form of
selection with two gates

	Fc AND sel
 XOR Fb 	�

where Fc � Fa XOR Fb

Without optimization� the number of gates required to implement all four
output bits of an S�box is ��� � �� to generate all functions of two inputs� plus
x � x 	� � � � � �
 gates for the selections� Using unspeci�ed optimizations�
Biham�s original version of this algorithm achieved an average gate count of
approximately ����

� An Incremental Improvement

The �rst improvement to the algorithm was developed independently by ��� ����
and ���� It involved the ordering of the S�box input bits�

The original algorithm always used the fourth and �fth S�box input bits to
expand to the �� functions of two variables� The remaining inputs were always
used for selection in the same order� However� there are �� 	���
 orderings for
these input bits� so it made sense to try all combinations to see which produced
the least number of gates� An average of �� gates resulted� as shown in table ��

S�boxes S� S	 S
 S� S� S� S� S

Gates �� � � �� �� � �

Table �� Gate counts after �rst improvement

The following optimizations were used� which are probably close to Biham�s
unspeci�ed optimizations� since they yield similar gate counts�

The �rst form of optimization occurs when a function of N variables is a
constant � or a constant �� For example� if Fc has a value of � regardless of its
inputs� then the selection function 	�
 can be reduced to

sel XOR Fb 	�

Similarly� other reductions are possible when Fc � �� Fb � �� or Fb � ��
The second form of optimization involves the elimination of common subex�

pressions� In other words� before a function of N variables is built you �rst check
if it has already been generated� If it exists� you re�use it� and no extra gates are
required�

� The RSA DES challenge

As a result of the ���� RSA DES challenge� a number of improved bitslice DES
implementations surfaced� Darrel Kindred ��� achieved an average of ���� gates
per S�box� while Rocke Verser ��� achieved ��� Verser�s code was used by the
DESCHALL team� which eventually won�

Although both authors have kept their designs con�dential� they have re�
vealed that they made use of non�standard gates� These are gates which� al�
though not directly supported by the C programming language� are often sup�
ported by the underlying CPU� The instructions are NAND� NOR� NXOR�
AND�NOT� and OR�NOT� The SPARC and Alpha architectures do not pro�
vide NAND and NOR� but it is a fairly simple matter to remove them from a
circuit by turning them into AND and OR respectively� and pushing the inver�
sions downstream�

� A Major Redesign

The benchmark had dropped by over �� percent� so a major redesign was called
for if the author was going to reclaim the lead� The �rst step was to simplify the
representation of the problem�

Each output bit of an S�box is a function of the six input bits� A convenient
representation for this is a six�variable Karnaugh map� which can be held in a
��bit integer 	or a pair of ���bit integers
�

It turns out that the output of every gate in the circuit can also be expressed
as a six�variable Karnaugh map� so the problem was formulated as follows� Given
a target Karnaugh map 	i�e� an output bit
� try to construct it with combinations
of the existing maps� To begin with� the only maps are the six inputs� but as the
circuit builds up� more become available�

Because the circuit will be built using previously generated gates where pos�
sible� the order that the circuit is built is very important� As a result� all ��
orderings of input bits� and all � orderings of output bits have to be tried� This

means that any design algorithm will be run with ����� orderings� and the best
result will be selected�

In general� the design philosophy is one of brute force� Try every di�erent
combination of design techniques� and use the result with the fewest gates�

� Recursive Search

At the heart of the design is a recursive search function� It takes as its inputs
the following�

�� The circuit so far� Initially this is just the six input bits�
�� The ��bit Karnaugh map that it has to generate�
�� A ��bit mask� All zero bits correspond to a don�t care value in the Karnaugh

map�
� Which input bit to use for selecting between two functions�

The function tries to generate the desired Karnaugh map with the following
techniques 	in the order given
� If� at any time� the size of the circuit gets bigger
than the best found so far� the function returns a not found value�

�� Look through the existing circuit� If there is a gate that produces the desired
map� simply return the ID of that gate�

�� If there are any gates whose inverse produces the desired map� append a
NOT gate� and return the ID of the NOT gate�

�� Look at all pairs of gates in the existing circuit� If they can be combined with
a single gate to produce the desired map� add that single gate and return its
ID�

� Look at all combinations of two or three gates in the circuit� If they can be
combined with two gates to produce the desired map� add the gates� and
return the ID of the one that produces the desired map�

�� Use the speci�ed input bit to select between two Karnaugh maps� Call this
function recursively to generate those two maps�

Techniques �� � and � are fairly complex� and are described in more detail
below�

� Combining Existing Gates

The search routine can run in two di�erent modes � using standard gates 	AND�
OR� XOR� and NOT
� or using non�standard gates� The choice of the mode
determines which options are tried�

Using standard gates� each pair of gates can be combined with any of three
di�erent operators 	AND� OR� and XOR
� With non�standard gates there are
ten choices� All of these options are �rst tried to test if they generate the desired
map�

If standard gates are being used� the next option is to emulate the other
seven non�standard pairwise operations by using two standard gates� As before�
they are used to combine all pairs of existing gates in an attempt to produce the
desired map�

The next option is to combine all possible triplets of existing gates using
all possible functions of two gates� With standard gates there are �� unique
functions of three variables that can be built with two gates� With non�standard
gates there are ��� As might be expected� testing all possible sets of three
existing gates with all of those functions is very time�consuming� especially with
non�standard gates�

� Selection Functions

To implement the selection function described in 	�
 we need to generate the
functions Fb and Fc� Given that the desired Karnaugh map is denoted by Fout�
and the map de�ned by the selecting input bit is denoted by Fsel� then

Fb � Fout AND NOT Fsel 	

Fc � Fb XOR Fout 	�

When generating Fb� the recursive search function is called with the don�t

care mask ANDed with NOT Fsel� and using the next input bit for selection�
When generating Fc� the don�t care mask is ANDed with Fsel�

It is also possible to build selection functions using gates other than AND�
For example� OR can be used�

Fout � 	Fd OR Fsel
 XOR Fe 	�

where
Fd � NOT Fout AND Fsel 	�

Fe � Fd XOR Fout 	�

Similarly� when using non�standard gates� the AND gate can be replaced
with ANDNOT� ORNOT� NAND� and NOR�

In practice� the procedure was to try all the di�erent selection functions to
generate the desired map� and to choose the one that resulted in the fewest gates�

	 Results

Applying all the above techniques resulted in a drastic reduction in the number
of gates� As can be seen in table �� when using standard logic gates� the average
gate count was reduced to ���

Generating the S�boxes with non�standard gates was a very time�consuming
task� It took approximately six weeks� utilizing an average of three ��bit work�
stations simultaneously during nights and weekends� Eventually the average gate
count was reduced to ��� as shown in table ��

S�boxes S� S	 S
 S� S� S� S� S

Gates �
 �� �� �	 �	 �� �� ��

Table �� Using standard gates

S�boxes S� S	 S
 S� S� S� S� S

Gates �� �� �

� �� �
 �� ��

Table �� Using non�standard gates

The actual gates generated by the previously�described techniques can be
downloaded from http���www�darkside�com�au�bitslice� where they are avail�
able as C source code� The gates also appear in the appendices as circuit dia�
grams�

�
 Summary

In situations permitting parallel execution of DES� bitslice implementations us�
ing these S�boxes are currently the fastest on all major architectures� As a result�
the S�boxes 	or slightly modi�ed hand�crafted assembler code equivalents
 are
used in most Unix password crackers 	e�g� John the Ripper ���
 and exhaustive
DES key search applications 	e�g� the distributed�net DES client ���
�

It is likely that the number of gates can be reduced still further� since the
techniques described here are by no means optimal� They simply improve on
existing methods� and it is quite possible that a completely di�erent approach
will yield better results�

In addition� they make no attempt to minimize the number of registers re�
quired to execute the instructions� The algorithms simply produce C code� and
leave the problem of register allocation to the compiler� An algorithm which
generates code tailored for a particular number of registers may well run a lot
faster� especially on architectures with MMX instructions� which have eight ��
bit registers�

�� Acknowledgements

The author wishes to thank The Preston Group Pty Ltd for allowing him to run
the search software on their machines week after week after week�

References

�� E� Biham� A Fast New DES Implementation in Software� proceedings of Fast Soft�

ware Encryption � Fourth International Workshop� Haifa� Israel� Springer�Verlag�
pp� 	���	�	� ����

	� distributed�net� http���www�distributed�net

� D� Kindred� http���www�cs�cmu�edu�People�dkindred�des�bitslice�html
�� M� Kwan� http���www�darkside�com�au�bitslice�old�alg�html
�� H� Laegreid� Di�erential Cryptanalysis on the Cray Origin 	��� Cand� Scient� thesis�

Dept� of Informatics� University of Bergen� September ����
�� S� Moriai� S� Amada and T� Shimoyama� Optimized Fast Software Implementation

of Block Ciphers IEICE Trans� Fundamentals� Vol� E��A� No� �� January ���
�� National Bureau of Standards� Data Encryption Standard� FIPS PUB ��� U�S� De�

partment of Commerce� ����
� Solar Designer� http���www�false�com�security�john
�� R� Verser� Personal communication

A S�box circuit diagrams

Figures � and � show the circuit diagrams for the eight DES S�boxes� using
standard and non�standard gates respectively�

This article was processed using the LATEX macro package with LLNCS style

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

Fig� �� DES S�boxes using standard gates

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

In1
In2
In3
In4
In5
In6

Out1
Out2
Out3
Out4

Fig� �� DES S�boxes using non�standard gates

